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T H E  E F F E C T  OF E L E V A T E D  E X T E R N A L  P R E S S U R E S  

ON T H E  N A T U R A L  C O N V E C T I O N  OF A LIQUID 

V. I. Kolesnichenko UDC 532.516.5 

Some technological processes involving the liquid phase proceed at elevated (compared with 
atmospheric) pressures. These are primarily casting and crystallization under pressure. The structure and 
properties of cast metals and alloys are determined to a large extent by the regime of crystallization, which 
(along with temperature and other technological parameters) can be controlled by pressure. In the case of 
crystallization under pressure, the action of ~)ressure on a crystallizing alloy facilitates the formation of a more 
homogeneous, fine-grained structure of castings [1]. 

Heat carriers working at elevated temperatures and pressures are used in some energy plants. Naturally, 
in this case the heat-carrier characteristics that depend on both temperature and pressure change. To work 
out a correct design of the operation of the plants, these variations in the thermophysical characteristics of 
the substance must be taken into account in the basic equations of hydrodynamics and heat transfer. 

Under normal conditions, the properties of a liquid are little affected by pressure nonuniformity in 
a moving medium. If an elevated external pressure is applied to the system, the resulting thermophysical 
quantities differ markedly from those at atmospheric pressure [2]. 

As for the temperature dependences, in the majority of papers devoted to free convective flows, it 
is assumed that the thermophysical characteristics of liquids are constant, except for the density in the 
buoyancy term in the equation of motion. Various methods are used to take into account the variability of 
the thermophysical characteristics. The determining-temperature method [3] is most extensively used. This 
effect, however, can be taken into account more accurately, if temperature variations in the characteristics of 
liquids are calculated locally in the process of solution. 

Whereas the temperature dependences of the thermodynamic characteristics of different substances 
in the liquid phase are known, these characteristics at elevated pressures have not been adequately studied. 
The thermodynamic method, using an equation of state and familiar thermodynamic relations, provides 
information on the characteristics of a substance in the temperature and pressure ranges required for the 
technological regime considered. 

A mathematical simulation of heat- and mass-exchange processes under pressure is performed in 
the present paper. The processes at atmospheric pressure and an elevated external pressure are compared 
using a test problem of free laminar convection of a liquid in a square chamber heated from the side. The 
equations of motion, unlike the conventional equations in the Boussinesq approximation, take into account 
the temperature dependence of the viscosity coefficient. The thermophysical characteristics entering in the 
equations are calculated locally in accordance with the varying temperature field. The same characteristics 
depend parametrically on the applied pressure. 

1. T h e r m o d y n a m i c  and  T h e r m o p h y s i c a l  Charac te r i s t i c s  of W a t e r  at  A t m o s p h e r i c  and 
Elevated  P ressu re .  Water - -  the best-investigated substance - -  was chosen as the working material for the 
problem. The temperature dependence of water characteristics at atmospheric pressure has been much studied. 
Figure 1 presents data of the table from [3] divided by the corresponding maximum values f0 = f / f  max. It 
is seen that /30 and #0 vary substantially (curves 1 and 2), A ~ varies noticeably, and p0 only slightly (curves 
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3 and 4) with increasing temperature t. Figure 1 does not show variation of specific heat c ~ because it is too 
small at the chosen scale. 

The thermophysical characteristics of liquids at elevated (as compared with atmospheric) pressure are 
poorly known. Water is an exception, for which there are tables [.t] of quantities X(T,p),/~(T,p), and v(T,p) ,  
where v = 1/p is the specific volume. There are data for the thermal compressibility factor ct(T,p) [5], but 
there are no sufficiently reliable data on the functions %(T, p) and other quantities. 

The missing temperature and pressure dependences of the thermodynamic quantities in the system 
can be determined by means of an equation of state of the liqui d and well-known differential equations 
of thermodynamics. Since for the liquid phase there is no theoretical equation of state, specific empirical 
equations [6] are used. The Tait empirical equation of state containing p and T as independent variables is 
used in the present paper to calculate water characteristics: 

(Po + L) / (p  + L) = (v/vo)". (1.1) 

Here p0 is the reference (for example, atmospheric) pressure; p is the current elevated pressure, at which the 
desired quantities are determined; v0 and v are the specific liquid volumes that correspond to the pressures 
p0 and p; n is a constant; and L(T)  is an empirical function of temperature, which, as the quantity n, is to 
be determined from experimental data. 

Let us calculate the following thermal (or, more precisely, thermodynamic) coefficients [6]: 
isothermal compressibility factor 

= - v - l ( O v / O p ) T  = [n(p + 5)1-1; (1.2) 

volumetric expansion factor 

/9 = v-l(Ov/cOT)p = (dL/dt)(p - po)/[n(po + i ) ( p  + L)]. (1.3) 

The variation in the heat capacity at constant pressure A% - %(p,T)  - %(po,T)  with an increase in 
pressure from p0 to p can be calculated by integrating the differential thermodynamic relation (c9%/c3p)T = 
-T(O2v/cOT2)p along the isotherm T = const. As a result, we obtain 

d2L n(vo - v) - v(p - Po)/(Po + L) _ / d i ' ~  2 (P - P~ (1.4) 
= n -  1 + n(po + L ) 2 ( p +  L)" 

Determining the constant n and the form of the temperature function L(T)  in the Tait equation 
of state (1.1) and in relations (1.2)-(1.4) is the next step. Zelenetskii et al. [2] processed the data for (~ 
of [5] by the least-squares method using expression (1.2), and after appropriate temperature and pressure 
averaging over the intervals of 0 ~< t ~ 80~ and 0.1 ~< p ~< 100 MPa, obtained the following values: n = 6.4, 
L(t) = ao + alt  + a2t 2 + aat 3, a0 = 3.0504 �9 10 s, al = 2.1140 �9 106 , a2 = -2.770 �9 104 , and a3 = 87.166 (L 
in pascals and t in degrees C). 

We compare water-density variations caused by different external effects. When pressure increases from 
0.1 to 100 MPa at t = 20~ the water density calculated by Eq. (1.1) increases by 40.4 kg/m 3 (or by 4% 
of the initial value at atmospheric pressure). When the water is heated at atmospheric pressure from 10 to 
100~ its density decreases by 41.35 kg /m 3, and when ice melts (t = 0), the density increases by 83.04 kg/m 3. 

Calculations using the Tait equation show that the water density has a weaker dependence on 
temperature variation as external pressure increases. For example, at p = 100 MPa, heating of water from 0 
to 80~ decreases its density only by 4.3 kg /m 3, whereas the same heating of water at atmospheric pressure 
gives 28.05 kg/m 3. 

There is a critical temperature T* at which d L / d T  = 0. For water, T* = 323.1 K. Since the volumetric 
expansion factor /3 is proportional to d L / d T  (1.3), the quantity /3 changes sign with passage through T*. 
Thus, at p > p0 and T > T*, the natural convective water flow reverses its direction. 

Figure 2 gives the functions ~ = $(p) calculated by relation (1.3) for t = 0, 10, 20, 40, 60, and 80~ 
(curves 1-6). A considerable effect of the external pressure and temperature on $ and an inversion of fl at 
t = t* are observed. 
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The heat capacity at constant pressure (1.4) varies only slightly. Thus, at t = 20~ and with an increase 
in pressure by 99 MPa, we have A% = 5.8 J / (kg .  K), which corresponds only to a 0.14% variation. 

The thermodynamic method does not make it possible to calculate the transfer coefficients for a 
liquid at various external pressures and temperatures. The functional relationships A(p, T) and/~(p, T) can 
be obtained by approximation of experimental data (for example, by the least-squares method) with the help 
of polynomials of appropriate degree [2]. In the ranges of 0 ~< t <~ 90~ and 0.1 ~< p <~ 50 MPa, 

A/A0 = [1 + (21.865 - 0.42745t + 7.4163 �9 10-3t 2 - 3.5804- 10-st3)10-4p] U2, 

P/Po = 1 J r  (0.10257t - 3.2653) �9 1 0 - 4 p ,  

where A0 and #0 are the coefficients at a pressure of 0.1 MPa. 
2. M a t h e m a t i c a l  M o d e l .  The thermal-convection equations in the Boussinesq approximation [7] are 

obtained under the assumption that  the thermophysical characteristics of the liquid are constant. Actually, 
as was shown above, these coefficients depend on temperature and pressure. The viscosity /~ varies most 
substantially with temperature  and the heat conductivity A varies noticeably (see Fig. 1 for relative values). 

The convection equations taking into account the temperature dependence of viscosity differ from the 
conventional Boussinesq equations by the replacement of the viscous force pAvi by Ocrik/Oxk (aik is the 
viscous-stress tensor [7, 8]). Considering the pressure dependence of viscosity parametric and taking into 
account only g = g(T),  from the Navier-Stokes equation we obtain 

( Ou) op :O2u o2,,  
OU+u~xx+v~y Oz+#kOz2 + Oy2 ] 

dp OT Ou OT Ou d# OT Ov 
+2 - -  

d~t OT Ov OT Ov 
+2 - -  

The heat-transfer equation ignoring dissipation takes the form 

(2.1) 
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Here, as for/~ in (2.1), the pressure dependence of the heat-conductivity coefficient is parametric, and ,~ = A(T) 
is explicit. The number of nonlinear terms in Eqs. (2.1) and (2.2) increased in comparison with the standard 
Boussinesq equations. 

The liquid is considered incompressible with respect to hydraulic factors, but it can be compressed, 
before the onset of the process, by an external elevated pressure which is kept constant during the process. 

Let us make the equations dimensionless. Let To be the characteristic temperature. We introduce 
th e following reduced quantities (the ratio of thermophysical quantities at the current temperature T to its 
values at To): p, = p/po, cp, = %/cpo, A, = A/A0, #, = #/#0, and /3, = 13/flo. To make the equations 
dimensionless, we choose the following scales: 1 for the length, ro = 12/vo for time, and 8T = Th -- 7c for the 
temperature difference (v0 = #o/po is the characteristic kinematic viscosity of the liquid, and Th and T~. are 
the temperatures of the hot and cold walls, respectively). 

The stream function 

and the vorticity 

t o -  Oz Oy \ Ox 2 + -~y2 ) (2.3) 

are introduced in the standard way. 
After transformations, we obtain the following dimensionless equation of motion in conservative form 

0--~ + 0----~ + 0 ~ -  - I'(, \ Ox 2 + Oy 2 ] + Ks ~ x  ~x  + ~ 

, ou Ov (o2T o r  

[K, = # , / p , ,  K2 = (d l~ , ldT) , /p , ,  Ka = Grojf, lp,] 

and the heat-transfer equation 

aT a(uT) O(vT) " fO2T O2T~ Ksr(OT~ 2 (OT~2] 
0--7 + 0 ~  + ay =tt4~-~-r L\O~z/ +\-Oy-y]l (2.5) 

[K4 = A, / (P,  Cl,,Pro), 1(5 = (dA,/dT)1,/(p,%,Pro)].  

Here Pro = vo/ao and Gr0 = g[3o$Tl3/v2o are the Prandtl and Grashof numbers formed of the characteristic 
thermophysical quantities and constant parameters of the process. Along with them, the dimensionless relative 
variables Ki (i = 1 , . . .  ,5) that depend locally on temperature enter in the equation. When KI = 1, K2 = 0, 
K3 = Gr0, K4 -- 1 /Pro,  and Ks = 0, Eqs. (2.4) and (2.5) coincide with the conventional equations of thermal 
convection. 

The problem is formulated as follows. Plane convective motion of the liquid in an infinite cylinder 
of square section heated from the side is considered. All boundaries of the domain are rigid and fixed. The 
coordinate origin]s placed in the left lower corner. The temperature on the lateral surfaces is constant: T = 0 
for z -- 0 and T = 1 for x = 1, and the horizontal boundaries are adiabatically isolated: OT/Oy = 0 for y = 0 
and 1. The attachment condition is specified at the rigid boundaries. 

The problem was solved numerically by the method of grids. Explicit schemes were used to approximate 
the equations, because " . . .  explicit nonstationary methods are less prone to the instability due to the 
nonlinearity of the equations, and, hence, they are less sensitive to the initial conditions" [9]. The number of 
nonlinear terms in the system of equations considered increased in comparison with the Boussinesq equations. 
The convective terms in the transfer equations were approximated by means of a conservative scheme with 
donor cells [9]. This scheme is transportable, i.e., a perturbation superimposed on a function is transported 
due to convection only in the direction of velocity (schemes with central differences do not possess these 
properties) and partially retains the second order of accuracy which is characteristic of schemes with central 
differences. 
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The Poisson equation (2.3) was solved by the method of successive overrelaxation with optimization 
of the relaxation-parameter value [10]. The vorticity on the boundary of the domain was calculated by the 
two-contour method of V. L. Gryaznov and V. I. Polezhayev [11], which takes into account more accurately 
the attachment condition in the new variable and increases considerably the calculation stability. 

3. Ca l cu l a t i on  Resu l t s .  The purpose of this investigation is to show the effect of elevated external 
pressures (the other conditions are fixed) on the liquid-flow pattern and heat exchange. To ignore the inversion 
of water density at atmospheric pressure near 4~ the temperature interval of the problem was shifted upward 
of this temperature. In both variants of calculation (p = 0.1 and 50 MPa), the temperature was assumed to 
be Tc = 283.15 K on the left boundary and Th = 313.15 K on the right boundary, and the length of the side 
of the working chamber was 1 = 1.8.10 - 2  m .  The Grashof and Prandtl numbers at characteristic temperature 
To = 283.15 K were as follows: Gr0 = 0.77- 105 and Pro = 9.4 (p = 0.1 MPa) and Gr0 = 1.18- 105 and 
Pro = 9.0 (p = 50 MPa). 

We used a 35 • 35 uniform computation grid. The problem was solved by the pseudotransient method. 
The vorticity w (2.4) and temperature T (2.5) calculated at a new time level were compared with their values 
obtained at the previous level. It was assumed that a steady-state solution was found, if both the relative 
differences for the vorticity and temperature did not exceed 0.01 for each grid point in the interior computation 
domain. Iterations in the solution of the Poisson equation (2.3) at each time level were terminated, if the 
relative variation in the values of the stream function r at neighboring iteration levels at each grid point did 
not exceed 0.001. 

Figure 3 presents profiles of the u and v components of the flow velocity for the vertical and horizontal 
cross sections through the middles of the chamber sides, respectively. Subscript I denotes the calculation results 
for atmospheric pressure, and subscript 2 denotes the results for the elevated external pressure (p = 50 MPa). 

Figure 4 shows isolines of the relative values of the stream functions r = ~bi/~bmax (i = 1 and 2) (r 
is the maximum value at p = 0.1 MPa) for two variants of the calculation: i = 1 and p = 0.1 MPa (at the left) 
and i = 2 and p = 50 MPa (at the right). The numbering of the curves corresponds to a uniform increase in 
the values of r The asterisks indicate the locations of maximum values of the stream functions (r176 = 1 
and (r176 = 0.767. 

It follows from Figs. 3 and 4 that the flow is of a boundary-layer type. At the vertical isothermal 
boundaries of the chamber, narrow convective boundary layers form in which the velocity gradients are mainly 
concentrated. The boundary layers at the horizontal adiabatic planes are less pronounced. The remaining part 
is the flow core [81. Flow reversal (Fig. 3) is observed, which is characteristic of flows at large Gr values [31. 
This indicates the occurrence of low-rate countercurrents. Convective flow at atmospheric pressure has a more 
developed boundary-layer regime than fluid flow at p = 50 MPa. 

The flow rate, apart from Cmax just considered, can also be estimated by the maximum value of 
the velocity modulus IVlm= = max{] �88  and by the value of the velocity modulus averaged over the 
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computation domain (IVl/. The quantity IVijl = ~/(u2j + vi 2) is the velocity modulus for each point (i , j)  of 

the computation grid. Comparison of the quantities IVilm~x -- 0.25- 10 -2 m/sec, [V2lmax = 0.15- 10 -2 m/sec 
and (IVll) = 0.59- 10 -3 m/sec,  and (IV21) = 0.42.10 -3 m/sec shows that the convective-flow rate of water is 
higher at atmospheric pressure. 

Figure 5 shows isotherms of steady-state flows at p = 0.1 MPa (at the left) and p = 50 MPa (at the 
right). The numbering of the curves corresponds to a uniform increase in the values of T. Large temperature 
gradients near the walls and a constant vertical gradient in the interior domain - -  so-called stratification 
m are observed. The flow at atmospheric pressure has a more developed thermal boundary layer. The flow 
patterns and temperature distributions obtained at p = 0.1 MPa are in qualitative agreement with the results 
of other authors [3, 8]. 

The dimensionless heat flow through the cold wall of the chamber is equal to 11.8 for p = 0.1 MPa and 
8.3 for p = 50 MPa. 

The rate of natural water convection is higher at atmospheric pressure. This is apparently a consequence 
of the fact mentioned above, i.e., with an increase in the external pressure on the liquid, the dependence of 
the water density on temperature variation becomes weaker, and this leads to a buoyancy reduction. 

In conclusion, we note the following: 1) An approach to the description of heat- and mass-transfer 
processes under conditions of elevated external pressure is proposed; 2) this approach was applied to a 
test problem on free laminar convection of a liquid (water) in a square chamber heated from the side; and 
3) the difference between the processes at atmospheric and elevated (p = 50 MPa) external pressures is 
shown and estimated quantitatively. In particular, it follows from the results of the work that the rate 
of thermogravitational convection decreases with an increase in the external pressure (other conditions 
being the same). 
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